

位 بشر يوذهانستـت.

530×13^{3}

$L^{2}+\sqrt{2}+\operatorname{con}^{2}$

앚N

x كار استغاد كمبي.

 ا يكد，

居 A 解

保 －M，b，1’\％

1.

土乌tax
 （

4

ها ．

40

$\left.\begin{array}{l}A H=A K \\ \text { f．} O A=O H\end{array}\right\} \rightarrow \stackrel{\Delta A H \cong O A K \Rightarrow}{\triangle}$ $\hat{S O O A=O H} \rightarrow$（ uivis，） © Fixay N，ti，Cion Ni，

$$
\dot{O}_{(\ddot{y})}
$$

$$
.3
$$

सW

 ；
 ，A 子

 ．

OBW，OAW 3 \rightarrow 约ow＝ow（covici）

$$
\Rightarrow \hat{A O W}=\hat{B O W}
$$

$$
=r^{\prime} x \hat{x y}
$$

Ent

行

$\left.\begin{array}{l}W A=W B \\ M W=M W \\ A M=B M\end{array}\right\} \Rightarrow A M W^{N}=8 M W$
$A M=B S M \quad \Rightarrow \hat{M}_{1}=\hat{M}_{2}$ $\hat{H}_{1}=\hat{M}_{2}=40, \hat{M}_{1}+\hat{M}_{2}=\omega 0 \sigma_{2}$ ， （1）＝ri，egत $A 6$ ， MW Ge

$$
0
$$

 2رl2

0

4～シ

ر．综

號

π

㥩

－小іила
．

，

家

－2020．6日．M．

را

رس خط عبو ير يكـ خط．از نتطها和 ＂هرخوا
－

 Shi j ；，．．．．．．．．

$1 \perp \alpha$

 خـ ．筑
． 2 ．届 （

少赌 عبود

10

教 نــن كـدن．D，C

 تranco

行隹

院

 ．／

$$
{ }^{+}
$$

． ب） E ${ }^{\prime}$ ， AB है
 5ッ，论

أن أن جل,辑 ．Ir جاكر

$(5 \times 5)^{3}$

［TARI

 الورهاي نالرــت
 ：

 ．

عا استخرا و استنتاج

ا
机辂
 ！新品 إر

24 8 a ，النقيتهأي
 الم

$\mathrm{dBBC}=\left\{\begin{array}{l}\hat{\mathrm{B}}=\hat{\mathrm{A}} t \\ \hat{\mathrm{C}}=\hat{\mathrm{A}} \boldsymbol{t}\end{array} \Rightarrow\right.$

$$
\Rightarrow \hat{A}+\hat{B}+\hat{C}=\hat{A}+\hat{A}+\hat{A}=1 \hat{A} \cdot *
$$

＂
وز
和 －Itr．

隹
 ．
朝 $A B C D$（事

$$
r k \cdot t=-1 ;
$$

號

元屏 د＇2 mexily車
路 عود

 ，AC，AB

 $A B^{3} C$ 己部

$$
=r_{1}
$$

 E． －vierctó
（1） $\mathrm{BC}=+\mathrm{AF}$
＇

$$
\text { (1) } \mathrm{BC}=A \cdot E \cdot
$$

 CIEF
$\stackrel{A G}{\mathrm{BC}} \| \mathrm{BC}, \mathrm{EF}\} \Rightarrow \mathrm{AG}$ 国 EF

Lien

\therefore IEF mbl

．DE

DE．F．F．．．

 .

- Eri

谷

$S^{3 a+1}$	$A B$	$B C$	$A C$
andj	C	H	B

ك

Eluat	$E F$	$O E$	$D F$
anas:	D	F	E

ena	GH HI	$G I$	
maj	I	G	H

M (Gusten 2$)^{3}=$

.

屋 كا 26

解路

 ta
＂ التخاب كَتـه
 مثن

D，D B B ن）C，B B

$$
\hat{\mathrm{C}} \geq \hat{\mathrm{B}}
$$

تفيهن الميده مى
．
 كوجكتر．

$$
\begin{aligned}
& \text { ij: } A B<A C \\
& \text { S\& } \hat{C}<\vec{B}
\end{aligned}
$$

. 3 Ait

 يرّ $\hat{i}: \hat{C}<\hat{B}$
$S \rightarrow 1 \cdot \mathrm{AB} \leqslant \mathrm{AC}$
:

 -

تفهيه

: $\mathrm{AB}=\mathrm{AC}$
So: $\mathrm{BH}=\mathrm{CH}^{\prime}$
保

: $\mathrm{BH}=\mathrm{CH}^{+}$
S. $\mathrm{AB}=\mathrm{AC}$

 و تركيڤ ال Splop if أز بركبـ الستا.

> :
> - اهـ r<T_ : ـ -

 .

N. با با
 N.

 de C，B B B
號 ．

إن
از آن خرض, هكارا مونـهـ
：$\hat{\mathrm{A}} \mathrm{A}>\hat{\mathrm{B}}$
SO：$B C>A C$
 BC＝A．C．

03
تاتض أـت
年
$\mathrm{BC}<\mathrm{AC}=$ 国
．

ق دان S

据

$$
\mathrm{BC}>\mathrm{AB} \quad \Leftrightarrow \quad \hat{\mathrm{~A}}<\hat{\mathrm{C}}
$$

بـال ：مر م
n
疗號

暒

whol

 10

2bly，靘

 （G）
－
S园 浣
㾍

ما
if

a هِّ

Tr

$$
\begin{aligned}
& A=\{1, r\} \\
& B=\{r, \varepsilon, Q\}
\end{aligned}
$$

$$
\begin{aligned}
& A \nsubseteq B, B \not \subset A
\end{aligned}
$$

o，whe $a=A, h=r \Rightarrow S_{1}=\frac{r \times a}{r}=1 r$

－bienir cuis pidiog do

TV

．
 bs，$A \ll$ 实；
 －is 象 1 b bis

． 2 2
الق（
－
（隹

$$
(n-r) \times 1 A \cdot 4=1+2
$$

哏，＇

－｜Th．λ 多
 بـ ．

生 n－r $\left\langle r^{s}\right.$

$$
\text { (少, (5) } 2
$$

$\sin (n-r)+1=n-r$

－ing Hixecrin

 cotunor jig）© $(n-r) \times 1 n . \operatorname{cis}^{3}$ （ri） $\mathrm{Cu}_{3} \mathrm{I}_{5} y^{5}$ ？ $\cdots-\infty$ phin

 Tcm Jot \& , $A^{\prime} B^{\prime}=\mathrm{cm}$ م
 $\frac{A^{\prime} B^{\prime}}{C^{\prime} D^{\prime}}=\frac{4}{1}=\frac{\pi}{\Delta}$

 $=1 \frac{2}{r} \cdot \mathrm{AB}+\mathrm{CD} \underbrace{}_{-} \cdot \operatorname{dil} \frac{1}{2} \cdot(\mathrm{D}+\mathrm{AB}=$

W以
 HSt $+-A B 2$
$A B C=-\frac{1}{4} A C \times B D$

$A B C \rightarrow-\operatorname{l} \frac{1}{T} A C_{X} \subset E$
-

人

A .
"-1

A

40×535

$$
\begin{aligned}
& \text { : } \\
& \frac{S_{A B C}}{S_{M C D}}==\quad \frac{S_{M C D}}{S_{A M}}=\ddot{S_{\text {ACE }}}=\cdots
\end{aligned}
$$

$$
\frac{S_{A B C}}{S_{A C D}}=\frac{A B C E L}{A C D \Sigma L}=\frac{B C}{C D}
$$

 $\frac{1}{2} h \times a$

范

（ أريُ

$$
\begin{aligned}
& \text { 號 }
\end{aligned}
$$

共
 \% م م
gإي

$$
\begin{aligned}
& \frac{x+\delta+2}{r+r+4}=\frac{r}{\partial} \rightarrow x+y+z=\frac{r r}{\delta}
\end{aligned}
$$

$x=\varepsilon \sqrt{0}$

\& : , , ADE

$S_{A B C}=\frac{1}{Y A H} X B C=\Lambda$

$$
A B=\frac{Y A B C B C}{} B D=1
$$

namies
π

$$
\begin{aligned}
& \frac{B C}{D E}=\frac{11}{2 x}=1 / 8 \quad \quad \theta, \frac{11}{x} \quad \cos \\
& \frac{D E}{B D}=\frac{x}{5 / 5}+1 / 6
\end{aligned}
$$

$\frac{A D}{D B}=\frac{A E}{E R}$ AO AE wotro As.ic $\frac{A D}{A B}=\frac{A E}{A C}$

苼

"
$\mathrm{MN}^{*} \| \mathrm{BC} \Rightarrow \frac{\mathrm{AN}^{+}}{\mathrm{AC}}=\frac{A M}{A B}$

هـال

$\frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AN}}{\mathrm{NC}} \Rightarrow \frac{\mathrm{x}}{\mathrm{r}}=\frac{\mathrm{x}-\cdot / 2}{\mathrm{~T} / \mathrm{TO}} \Rightarrow$
$T / \tau \Delta x=r x-1 / 2 \Rightarrow+/ v \Delta x=1 / \Delta \Rightarrow x=\tau$
$\frac{A M}{A B}=\frac{M N}{B C} \Rightarrow \frac{\tau}{2} n \frac{y}{+/ 3} \Rightarrow y=1 / A$

 $\frac{r}{D B}=\frac{1}{\gamma \Delta} \rightarrow D B=1$

$$
\begin{aligned}
& \rightarrow D B=1 \\
& \frac{r}{r^{2}}=\frac{1}{1,0}=\frac{D B}{\frac{t}{2}} \rightarrow D B=\frac{\Delta}{2}
\end{aligned}
$$

$\frac{1}{x}=\frac{y}{x+r}-x+r=r x-x=1 \quad x+y$,

$$
\frac{1}{F}=\frac{r, 0}{B C} \rightarrow B=(B, 0)
$$

$$
\begin{aligned}
\frac{9}{x}=\frac{x}{r^{2}}-\sqrt{x \cdot 4} \quad & \frac{9}{10}
\end{aligned}=\frac{r y-1}{A}
$$

 $\frac{A B}{A D}=\frac{A C}{A E} \rightarrow A E^{\prime}=A C=A F, A C=S-4 A, A E ;$ $A B=A E \rightarrow A C-A F$

$$
\frac{H R}{A D}=\frac{A E}{A F}
$$

 S-1

$\left(\omega y^{2} y^{2}-\operatorname{ll}\right.$ ($\left.4 \omega\right) \frac{\mathrm{AM}}{\mathrm{MD}}=\frac{\mathrm{BN}}{\mathrm{NC}}$

$$
\begin{aligned}
& \frac{A M}{M D}=\frac{A K}{K C} \\
& \frac{B C}{D C}=\frac{A K}{K C}
\end{aligned}
$$

2斯

 $\lim _{\rightarrow \prime \prime}$
 जj< s-bataturn

$$
\begin{aligned}
\frac{a}{11}=\frac{r, \varepsilon^{w}}{1,1+x} \rightarrow 14, r+9 x & =r 4, v r \\
q x & =10,0 r^{r} \rightarrow x=1,1 v
\end{aligned}
$$

$$
\begin{aligned}
& \text { - - } \\
& \angle A=\angle A \\
& \angle B=A \text { B. } \quad \frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{B^{\prime} C^{\prime}}{B C} \Leftrightarrow \triangle A^{\prime} B^{\prime} C^{\prime}-\triangle A B C \\
& \angle C=\angle C
\end{aligned}
$$

$$
\begin{aligned}
& \text { 媇 }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{MN} \| \mathrm{BC} \Rightarrow \triangle \mathrm{AMN} \sim \triangle \mathrm{ABC}
\end{aligned}
$$

$$
\begin{aligned}
& \text { S1, b) Ang } \\
& \frac{A M}{A B}=\frac{A N}{A C}=\frac{M N}{B C}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{AMN} \sim A B C
\end{aligned}
$$

$$
\angle B^{\prime}=\angle B^{\prime}, \angle A+\angle B+\angle C-\angle A^{\prime}+\angle B^{\prime}+\angle C^{\prime}=4 A^{+}-1
$$

$$
\angle \mathrm{A}=\angle \mathrm{A}^{\prime} \alpha^{\prime}, 2, \angle \mathrm{C}=\angle \mathrm{C}^{\prime},
$$

با بات

$$
\omega^{5}
$$

$\mathrm{AM}=\mathrm{AB}^{\prime}, \mathrm{AN}=\mathrm{A}^{\prime} \mathrm{C}^{\prime}, \angle \mathrm{A}=\angle \mathrm{A}^{\prime} \Longrightarrow \triangle \mathrm{AMN} \equiv \triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{-}-{ }^{-}$
$\Rightarrow \mathrm{MN}=\mathrm{B}^{\prime} \mathrm{C}^{-}, \angle \mathrm{M}=\angle \mathrm{B}^{\prime}, \angle \mathrm{N}-\angle \mathrm{C}^{+}$
$\angle \mathrm{M}=\angle \mathrm{B}^{\prime}, \angle \mathrm{B}=\angle \mathrm{B}^{\prime} \Rightarrow \angle \mathrm{M}=\angle \mathrm{B} \Rightarrow \mathrm{MN} \| \mathrm{BC} _r$

 $\angle A=\angle A^{\prime} \cdot \frac{A B^{\prime}}{A B}=\frac{A^{\prime} C^{\prime}}{A C} \Rightarrow \triangle A B C-\triangle A^{\prime} B^{\prime} C^{\prime}$

1 H

 $A M N \cong \widehat{A C} C^{\circ} C \hat{O}, ~ \triangle A M N A \hat{A C C N} B C / I M N$ US is

$$
\begin{aligned}
& \text { (1) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مَ } \\
& \because \mathrm{BC}_{5 j} \mathrm{~m} \mathrm{MN}
\end{aligned}
$$

$$
\frac{A^{\prime} B^{\prime}}{A B}=\frac{A C^{\prime}}{A C}=\frac{B^{\prime} C^{\prime}}{B C} \Rightarrow \triangle A B C-\triangle A^{\prime} B^{\prime} C
$$

部
 $B=\frac{A N}{A C}=\frac{1}{A} \rightarrow M M / 1 B C \quad$ IMN|BC $\rightarrow+3$.

4 4 NATe dacillendaznils
 anciplisululd

 $\mathrm{MN}=\mathrm{BC}^{\prime} A B \mathrm{AC} B C \longrightarrow \frac{A^{\prime} B}{A / S}=\frac{A^{\prime} C}{A C}=\frac{M W}{B C}$ \qquad

م
 S ا
为 (2
 :
$\angle \mathrm{B}=\angle \mathrm{B}, \angle \mathrm{C}=\angle \mathrm{E}=1 .^{\circ} \Rightarrow$
$\triangle \mathrm{ABC}-\triangle \mathrm{BDE} \Rightarrow$

(دنَّ
$\frac{D E}{A C}=\frac{B D}{A B}=\frac{B E}{B C} \Rightarrow \frac{10}{18}=\frac{B D}{T 1} \Rightarrow B D=\frac{11 \times 18}{14}=1 \times 10 \mathrm{~m}$

R

Inament

 -

$\angle \mathrm{M}=\angle \mathrm{B}, \angle \mathrm{C}=\angle \mathrm{C} \Rightarrow \triangle \mathrm{MNC} \sim \triangle \mathrm{ABC}$
$\frac{M C}{B C}=\frac{M N}{A B}=\frac{N C}{A C}$

$\frac{A C}{r B C}=\frac{N C}{A C} \Rightarrow A C^{+}=r N C B C=r N C(N C+N B) \Rightarrow A C^{\dagger}=$
$\mathrm{T} \times \mathrm{T}(\mathrm{T}+\mathrm{T})=\mathrm{Tt} \Rightarrow \mathrm{AC}=\mathrm{T} \sqrt{7}$

1 रकान

 $E=6, \hat{A}=H$
in
$\triangle A B H-\triangle A B C, ~ \triangle A C H \sim \triangle A B C$

ENG

1) $\mathrm{AB}^{\prime}=\mathrm{BC} \cdot \mathrm{BH}$
2) $\mathrm{AC}^{\prime}=\mathrm{BC} \cdot \mathrm{CH}$
T) $A B^{+}+A C^{\prime}=B C^{\prime}$
3) $\mathrm{AH}^{\prime}=\mathrm{BH} \cdot \mathrm{CH}$
a) $\mathrm{AH}=\mathrm{BC}=\mathrm{AB} \times A C$

- M)

$x+2=0.16$
(i=0) NE $\because 2^{\circ} \mathrm{C}_{1}$?

$$
\frac{1}{r}=\frac{r}{4}=\frac{x}{\pi i}
$$

$$
\left.T^{\prime} x, 2\right\rangle
$$

70
7π
$x=v, \gamma \quad \frac{1}{2}=\frac{r}{4}=\frac{x}{2 i}$

$$
\begin{aligned}
& \frac{A H}{A C}=\frac{A B}{B C}=\frac{B H}{A B} \Rightarrow A B \cdot B H \times B^{C}
\end{aligned}
$$

$B H=2 \sqrt{r} \quad C H=E \sqrt{7} / r$
 $\hat{A D C} \sim A B C\left[\begin{array}{l}A_{1}=B \\ \hat{C}=\hat{E}\end{array} \Rightarrow \frac{D C}{A C}=\frac{A C}{D C}=\frac{A D}{A B} \Rightarrow A C=D C B C\right.$ LiE $A C=D C \quad A B \quad 1 y=x(y+x)$

路

和

小
层

 （䡉 g ，

π

$$
\frac{h}{1,4}=\frac{r_{0}}{r 0} \longrightarrow h=15 \wedge
$$

$O D>\mathrm{AH}$
 $A H E x \cdot y \rightarrow A H=\sqrt{n+y} \quad \quad-5, \$ L$ $O D=x+3$
 $y<3<5$
-

N

$$
-1, j x+2=x
$$

 $\mathrm{AB}^{+}=\mathrm{AB}, \mathrm{AC}^{+}=\mathrm{NC}, \mathrm{N}^{\prime}-4=$

$$
\hat{P} \dot{Q} \dot{Q} B C=B C+S-b, \alpha, \dot{B}=
$$

S 5 , s'wh -

$$
\begin{aligned}
& \frac{A B}{B C}=\frac{A D}{C D}=\frac{v}{A} \Rightarrow \frac{A D+C D}{C D}=\frac{\gamma+A}{A} \Rightarrow \frac{A C}{C D}=\frac{10}{A} \Rightarrow \\
& C D=\frac{A \times \Delta}{10}=\frac{\lambda}{r}, A D=A E-C D=\Delta-\frac{A}{r}=\frac{\gamma}{r}
\end{aligned}
$$

 © $;: \angle A=\angle A, \quad \quad S+\frac{A B}{A C}=\frac{B D}{C D}$

$$
f
$$

> و د g 名

$k 4 \psi^{\circ}$ a

$$
=+E^{\prime} i\left(\frac{A^{\prime} B^{\prime}}{A B}=\frac{A C^{\prime}}{A C}=\frac{B^{\prime} C^{\prime}}{B C}=k\right)+\ldots
$$

－k 相
$\frac{\mathrm{A}^{\prime} \mathrm{H}^{*}}{\mathrm{AH}}=\mathrm{k}$
＝ $2 k 4$＋
$\frac{\mathrm{CN}^{-}}{\mathrm{CN}}=\mathrm{k}$

$\frac{B^{\prime} D}{B D}=k$
：

:
$\frac{S_{\text {AITC }}}{S_{\text {ABC }}}=k^{*}$
．كـي
$\rightarrow \quad \triangle A B C-A A^{\prime} B^{\prime} C^{\prime} \cdot \frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} C^{+}}{A C}=\frac{B^{*} C^{*}}{B C}=k$
$S . \frac{A^{\prime} H^{\prime}}{A H}=k$

$$
\begin{aligned}
& \frac{C D}{D B}=\frac{A C}{A B} \\
& \frac{x}{y}=\frac{\partial}{v} \longrightarrow \frac{x+y}{y}=\frac{15}{V} \rightarrow \frac{\Delta}{\partial}=\frac{1 r}{V} \rightarrow j=\frac{\partial T}{1 r}=\varepsilon, y \\
& X_{2} \text { 库 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بر }
\end{aligned}
$$

$\hat{B}=\hat{\sigma^{\prime}}, \hat{H}=\hat{H}^{\prime}$
S

$$
\frac{A^{\prime} O^{\prime}}{A C}=K \rightarrow \frac{A^{\prime} H^{\prime}}{A H}=K \quad \text { Siseorser }
$$

$\cdots \triangle \triangle B C-\triangle A B C \cdot \cdot \frac{A B B}{A B}=\frac{A C}{A C}=\frac{B C}{B C}-k$
S $\frac{A M^{\prime}}{A M}=k$
A'sc' ${ }^{\circ}$

$$
\frac{\mathrm{BM}^{\prime}}{\mathrm{BM}}=\frac{\frac{3}{r} B C}{\frac{1}{r} C^{c}}=k \Rightarrow \frac{\mathrm{AB}^{*}}{\mathrm{AB}}=\frac{\mathrm{BM}^{\prime}}{\mathrm{BM}}
$$

-

$\frac{A^{\prime} B}{A B}=K \rightarrow \frac{A^{\prime} A}{A M}=K \quad$ 禺

$$
\frac{A^{\prime} B}{A B}=\frac{B D}{B D}=K
$$

Lhens:

$$
\begin{aligned}
& {A A^{\prime} B^{\prime} C^{\prime}-A A B C}^{A}=\frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} C^{\prime}}{A C^{\prime}}=\frac{B^{\prime} C^{C}}{B C}=k \Rightarrow \\
& \frac{A^{\prime} B^{\prime}+A^{\prime} C^{\prime}+B^{\prime} C^{\prime}}{A B+A C^{\prime}+B^{\prime}}=k=\frac{P_{A y C^{\prime}}}{P_{A B C}}=k
\end{aligned}
$$

- A
 $\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=K \rightarrow \frac{A B+A^{C}+B C}{A^{\prime} B^{\prime}+A^{\prime}+B^{\circ} C}=k$,
:

T

> :

 :
.

:

A

$$
\begin{aligned}
& \frac{s}{S}=K^{T} \\
& \frac{P}{S}=K
\end{aligned} \frac{s}{S}=\frac{1 \cdot}{1 A} \rightarrow \frac{s}{1+}=\frac{1-i}{1 K}
$$

$$
S=\frac{\Delta O}{Y}=\frac{Y O}{r}
$$

n
0
0
0
0
0
0
maty

$$
\frac{\varepsilon}{2}=\frac{\pi}{x} \rightarrow \frac{x=-W}{\partial x^{2}}
$$

$$
\frac{18}{10}=\frac{p}{p=}
$$

$$
\hat{S}^{\prime}=\wedge S \rightarrow \frac{S_{A B C}}{S_{A N N}}=9
$$

$$
\frac{A B}{A M}=r
$$

$$
\begin{gathered}
-x=-\frac{M B}{M A}=\frac{x+A M x-1}{x}=1^{2} \Rightarrow \frac{x}{x}=\frac{y}{1} \\
\frac{y}{x}=\frac{x}{1}
\end{gathered}
$$

$$
\frac{x}{y}=\frac{\partial}{10}, \frac{x+y}{y}=\frac{10}{1+} \rightarrow \frac{v}{y}=\frac{10}{1}
$$

$$
\therefore \quad A M B \xrightarrow{\angle i s M Q} \frac{A Q}{Q B}=\frac{A M}{M B}
$$

$P Q \| B C \quad \because$

$$
\begin{aligned}
& m=M \cos
\end{aligned}
$$

$$
\begin{aligned}
& \jmath \sim O_{0} \text { O }
\end{aligned}
$$

$$
\begin{aligned}
& \hat{B}, \hat{C} \text { r/r } \frac{O E}{O F}=\frac{O B}{O C}=\frac{T}{T} \hat{S}
\end{aligned}
$$

An
An

国 أبات ويرّكى شاى تناسب

$$
\frac{a}{b}=\frac{c}{d} \Rightarrow a d=h c \Rightarrow d a=c b \Rightarrow \frac{d}{b}=\frac{c}{a}
$$

$$
\frac{\mathrm{a}}{\mathrm{~b}}=\frac{\mathrm{c}}{\mathrm{~d}} \Rightarrow \mathrm{ad}=\mathrm{hc} \Rightarrow \mathrm{hc}=\mathrm{ad} \Rightarrow \frac{\mathrm{~b}}{\mathrm{a}}=\frac{\mathrm{d}}{\mathrm{c}}
$$

:

$$
\begin{aligned}
& \frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a}{b}+1=\frac{c}{d}+1 \Rightarrow \frac{a+b}{b}=\frac{c+d}{d} \\
& \frac{a}{b}=\frac{c}{d} \Rightarrow \frac{b}{a}=\frac{d}{c} \Rightarrow \frac{b}{a}+t=\frac{d}{c}+t \Rightarrow \frac{a+b}{a}=\frac{c+d}{c} \Rightarrow \frac{a}{a+h}=\frac{c}{c+d}
\end{aligned}
$$

多

$$
\begin{aligned}
& \frac{a}{b}=\frac{c}{d}=k \Rightarrow a=b k, c=d k \Rightarrow \frac{a+c}{b+d}=\frac{h k+d k}{b+d}=\frac{k f(b+d)}{h+d}=k \\
& \Rightarrow \frac{a+c}{b+d}=\frac{a}{b}=\frac{c}{d}
\end{aligned}
$$

$$
\begin{aligned}
& \text { : } \\
& \frac{a}{b} \times \mathrm{hd}=\frac{v}{d} \times h d \Rightarrow \mathrm{ad}=\mathrm{bc}
\end{aligned}
$$

فصل r : چֶند ضلعى ها

درس اول : چههار ضلعى ها

صF
 (1) ()地

 أن أن د $\angle \mathrm{B}, \angle \mathrm{A}-\mathrm{Cl}$. (F) O (V) A

.2. 2 .
 الهـ"

(C

unl $5,3,15$

$$
\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=9 .{ }^{\circ} \text { : الف: }
$$

$$
\mathrm{AD}\|\mathrm{BC}, \mathrm{AB}\| \mathrm{CD}:
$$

$$
\left.\left.\begin{array}{l}
\mathrm{AD} \perp \mathrm{AB} \\
\mathrm{BC} \perp \mathrm{AB}
\end{array}\right\} \Rightarrow \mathrm{AD} \| \mathrm{BC} \quad \begin{array}{l}
\mathrm{AB} \perp \mathrm{AD} \\
\mathrm{CD} \perp \mathrm{AD}
\end{array}\right\} \Rightarrow \mathrm{AB} \| \mathrm{CD}: \dot{\mathrm{c}} \mathrm{\|}
$$

$$
\begin{aligned}
& \angle \mathrm{A}=9 .{ }^{\circ}, \mathrm{AD} \| \mathrm{BC}, \mathrm{AB}| | \mathrm{CD}: \text { : } \\
& \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=9.0^{\circ} \text { : }{ }^{\circ} \mathrm{C}
\end{aligned}
$$

مورب $\mathrm{AB}, \mathrm{AD} \| \mathrm{BC} \Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=9 . \circ$,
. $\mathrm{AD}, \mathrm{AB} \| \mathrm{CD} \Rightarrow \angle \mathrm{A}=\angle \mathrm{D}=9.0^{\circ} \quad \Gamma$
D. $\mathrm{r} \Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{D}=9 \cdot{ }^{\circ} \Rightarrow \angle \mathrm{C}=9 .{ }^{\circ}$
 , دا

 لوزى تيز نوعى متوازي الافـلاع السـت

D9 axiol vidix

俍 －．．．．．．．．．．．．．． （大） AD （ A ． ．

度

$$
\begin{aligned}
& \text { كا }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\angle \mathrm{A}+\angle \mathrm{B}=1 \mathrm{~A} \cdot{ }^{\circ} \\
\angle \mathrm{B}+\angle \mathrm{C}=1 \mathrm{~A} \cdot{ }^{\circ}
\end{array}\right\} \Rightarrow \angle \mathrm{A}+\angle \mathrm{B}=\angle \mathrm{B}+\angle \mathrm{C} \Rightarrow \angle \mathrm{~A}=\angle \mathrm{C} \\
& \left.\begin{array}{l}
\angle \mathrm{A}+\angle \mathrm{B}=1 \mathrm{~A} \cdot{ }^{\circ} \\
\angle \mathrm{A}+\angle \mathrm{D}=1 \mathrm{~A} \cdot{ }^{\circ}
\end{array}\right\} \Rightarrow \angle \mathrm{A}+\angle \mathrm{B}=\angle \mathrm{A}+\angle \mathrm{D} \Rightarrow \angle \mathrm{~B}=\angle \mathrm{D}
\end{aligned}
$$

，$\angle \mathrm{B}$（ ，\angle A ．$\angle C, \angle B$ B

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=r 9 \cdot \circ \xrightarrow{\angle \mathrm{~A}=\angle \mathrm{C}}=\angle \mathrm{D} \\
& \angle \mathrm{~A}+r \angle \mathrm{~B}=r 9 \cdot \circ \xrightarrow{+r} \angle \mathrm{~A}+\angle \mathrm{B}=1 \mathrm{~A}^{\circ} \cdot \\
& \left.\begin{array}{l}
\angle \mathrm{A}=\angle \mathrm{C} \\
\angle \mathrm{~B}+\angle \mathrm{D}
\end{array}\right\} \xrightarrow{\square} \angle \mathrm{A}+\angle \mathrm{B}=\angle \mathrm{B}+\angle \mathrm{C}=\angle \mathrm{C}+\angle \mathrm{D}=\angle \mathrm{A}+\angle \mathrm{D}=1 \mathrm{~A}^{\circ} \Rightarrow \mathrm{AB}\|\mathrm{CD}, \mathrm{AD}\| \mathrm{BC}
\end{aligned}
$$

4 Ewitr

很
田

$$
\Delta \mathrm{OAD} \equiv \Delta \mathrm{OBC} \Rightarrow \hat{\mathrm{~B}}_{\Gamma}=\hat{\mathrm{D}}_{Y} \Rightarrow \mathrm{AD} \| \mathrm{BC}=\mathrm{m}
$$

$$
\begin{aligned}
& \because H \quad \mathrm{AC}, \mathrm{AB} \| \mathrm{CD} \Rightarrow \angle \mathrm{~A}_{1}=\angle \mathrm{C}_{1} \\
& \left.\begin{array}{rl}
\mathrm{AB}=\mathrm{CD} \\
\mathrm{D}, \mathrm{AB} \| \mathrm{CD} \Rightarrow \angle \mathrm{~B}_{1}=\angle \mathrm{D}_{1}
\end{array}\right\} \longrightarrow \triangle \mathrm{OAB}=\triangle \mathrm{OCD}
\end{aligned}
$$

$\left.\begin{array}{l}\mathrm{AD}=\mathrm{BC} \\ \mathrm{AC}=\mathrm{BD} \\ \mathrm{CD}=\mathrm{CD}\end{array}\right\} \xrightarrow{\mathrm{ADDC} \cong \triangle \mathrm{BCD} \Rightarrow \angle \mathrm{C}=\angle \mathrm{D},{ }^{2} \mathrm{~A}}$
$\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=9 \cdot 0^{\circ}$ + از طرف د

4． $1+5$ Y－ا

此 الم

$$
\begin{aligned}
& \text { 保 }
\end{aligned}
$$

تسر ها N路 $\Delta \mathrm{ABH} \cong \triangle \mathrm{ADH}$ اربر 4
\qquad
－2xicto lanaegl j

كار در كلاس صنحه

AH . \triangle ABD

لوزی ABCD

熈
$\left.\begin{array}{l}\angle \mathrm{A}_{1}=\angle \mathrm{A}_{r} \\ \angle \mathrm{~B}=\angle \mathrm{D}\end{array}\right\} \longrightarrow \angle \mathrm{C}_{1}=\angle \mathrm{C}_{r}$ I

 بالوزى بربع است

ق
 . Nا
 :

 , BC ,

$\angle \mathrm{C}, \angle \mathrm{B}$ sandj .

至 .

-
 الين حور:

$$
t=10 \text { ta }
$$

OHC, $\mathrm{AD} \| \mathrm{BE} \Rightarrow \angle \mathrm{D}=\angle \mathrm{E}$,

$$
81 \rightarrow \mathrm{BC}=\mathrm{BE}
$$

 : ON ا

$$
\begin{aligned}
& A C=B D \quad A B \| C D, A D=B C+{ }_{\text {d }}^{\text {d }}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\mathrm{AD}=\mathrm{BC} \\
\angle \mathrm{~A}=\angle \mathrm{B} \\
\mathrm{AB}=\mathrm{AB}
\end{array}\right\} \xrightarrow{\dot{j} \dot{\mathrm{i}}} \mathrm{ABC} \cong \triangle \mathrm{ABD} \Rightarrow \mathrm{AC}=\mathrm{BD}
$$

$\left.\begin{array}{r}\angle \mathrm{E}=\angle \mathrm{F}=9.0^{\circ} \\ \mathrm{AC}=\mathrm{BD} \\ \mathrm{CF}=\mathrm{DE}\end{array}\right\} \quad \angle \mathrm{ACF} \Rightarrow \triangle \mathrm{BDE} \Rightarrow \angle \mathrm{A},=\angle \mathrm{B}, \Rightarrow \mathrm{OA}=\mathrm{OB}$
$\left.\begin{array}{l}\mathrm{OA}=\mathrm{OB} \\ \mathrm{AC}=\mathrm{BD}\end{array}\right\} \Rightarrow \mathrm{OC}=\mathrm{OD}$
AD = BC بنا بَ حالد (

$$
\frac{n(n-r)}{r}=n \Rightarrow n^{\prime}(n-r)=r n \Rightarrow n-r=r \Rightarrow n=\Delta
$$

$$
\begin{align*}
& \text {, } \mathrm{BC}=\mathrm{B}^{\prime} \mathrm{C}^{\prime}, \angle \mathrm{B}=\angle \mathrm{B}^{\prime}, \mathrm{AB}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{Cl} \text {, } \tag{الإت}
\end{align*}
$$

. $\angle \mathrm{D}=\angle \mathrm{D}^{\prime}, \mathrm{CD}=\mathrm{C}^{\prime} \mathrm{D}^{\prime}, \angle \mathrm{C}=\angle \mathrm{C}^{\prime}, \mathrm{BC}=\mathrm{B}^{\prime} \mathrm{C}^{\prime}, \angle \mathrm{B}=\angle \mathrm{B}^{\prime}, \xi^{\prime}$ I

$$
\begin{aligned}
& \angle \mathrm{B}_{1}=\angle \mathrm{B}_{1}^{\prime} \xrightarrow{\angle \mathrm{B}=\angle \mathrm{B}^{\prime}} \angle \mathrm{B}_{T}=\angle \mathrm{B}_{r}^{\prime} \quad \text { iv } \\
& \text { : } \mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{D}^{\prime}, \mathbf{A B D}=1
\end{aligned}
$$

MNPQ M M

$\square A B C D ; \angle A+\angle B=1 A^{\circ} \Rightarrow \frac{\angle A}{r}+\frac{\angle \mathrm{B}}{r}=\frac{10^{\circ}}{r} \Rightarrow \triangle O A B ; \angle \mathrm{A},+\angle \mathrm{B},=4 .^{\circ} \Rightarrow \angle \mathrm{O}=9 \cdot^{\circ}$,
با

$$
\triangle \mathrm{OAB} ; \angle \mathrm{C}_{1}+\angle \mathrm{D},=9 .{ }^{\circ} \Rightarrow \angle \mathrm{N}=9.0^{\circ} \mathrm{r}, \triangle \mathrm{PBC} ; \angle \mathrm{B}_{\gamma}+\angle \mathrm{C}_{\gamma}=9.0^{\circ} \Rightarrow \angle \mathrm{P}=9.0^{\circ}
$$

$$
\Delta \mathrm{CDN} ; \angle \mathrm{C}_{1}=\angle \mathrm{D}_{1}=\mathrm{F} \Delta^{\circ} \Rightarrow \mathrm{CN}=\mathrm{DN}
$$

سي طول و عر

+ , إرحسب a

$$
\begin{aligned}
& \triangle \mathrm{DCN}: \angle \mathrm{N}=4,{ }^{\circ} \Rightarrow \mathrm{CN}^{\top}+\mathrm{BN}^{\top}=\mathrm{CD}^{\top} \\
& \xrightarrow{\mathrm{CN}=\mathrm{DN}} \mathrm{CCN}^{\top}=\mathrm{a}^{\tau} \Rightarrow \mathrm{CN}=\frac{a}{\sqrt{\tau}}=\frac{a \sqrt{r}}{r} \quad \text { (1) } \\
& \triangle B C P ; \angle \mathrm{P}=9+^{\circ} \Rightarrow \mathrm{PC}^{\top}+\mathrm{PB}^{\top}=\mathrm{BC}^{\top} \\
& \xrightarrow{\mathrm{CN}=\mathrm{DN}} \mathrm{CPP}^{\top}=\mathrm{b}^{\dagger} \Rightarrow \mathrm{CP}=\frac{\mathrm{b}}{\sqrt{r}}=\frac{\mathrm{b} \sqrt{r}}{\tau} \quad \mathrm{~T} \\
& \text { [1. [} \Rightarrow C N-C P=\frac{a \sqrt{r}}{r}-\frac{b \sqrt{r}}{r} \Rightarrow P N=\frac{\sqrt{r}}{r}(a-b)
\end{aligned}
$$

r.*
 ; -
$\cdot A C=\frac{\sqrt{r}}{,} B C$.
 ا ان أناز
اكون

$\triangle \mathrm{ABC} ; \angle \mathrm{A}=9 \cdot{ }^{\circ}, \angle \mathrm{C}=\mathrm{r} \cdot{ }^{\circ} \Rightarrow \angle \mathrm{B}=9 .{ }^{\circ}$
$\triangle \mathrm{ABM} ; \mathrm{AM}=\mathrm{BM} \Rightarrow \angle \mathrm{A}_{1}=\angle \mathrm{B}=\mathrm{F}^{\circ} \Rightarrow \mathrm{AM}=\mathrm{BM}=\mathrm{AB} \Rightarrow \mathrm{AB}=\frac{\mathrm{BC}}{\mathrm{r}}$
$\triangle \mathrm{ABC} ; \angle \mathrm{A}=90^{\circ} \Rightarrow \mathrm{AB}^{r}+\mathrm{AC}^{r}=\mathrm{BC}^{r} \xrightarrow{\mathrm{AB}=\frac{\mathrm{BC}}{r}} \mathrm{AC}^{r}=\mathrm{BC}^{r}-\left(\frac{\mathrm{BC}}{r}\right)^{r}$
$\Rightarrow A C^{\top}=\frac{r B C^{\top}}{r} \Rightarrow A C=\frac{\sqrt{r}}{r} B C$
$\triangle \mathrm{ABC} ; \angle \mathrm{A}=90^{\circ}, \angle \mathrm{B}=F \Delta^{\circ} \Rightarrow \angle \mathrm{B}=\angle \mathrm{C} \Rightarrow\left\{\begin{array}{l}\mathrm{AB}=\mathrm{AC} \\ \mathrm{AB}^{\top}+\mathrm{AC}^{\top}=\mathrm{BC}^{\top}\end{array}\right.$ $r A B^{r}=B C^{\tau} \Rightarrow A B^{\tau}=\frac{B C^{\top}}{r} \Rightarrow A B=\frac{B C}{\sqrt{r}}=\frac{\sqrt{\tau}}{r} B C$

إم

$\triangle A B C ; A M=M B=\frac{B C}{T} \Rightarrow \angle A_{1}=\angle B=12^{\circ} \Rightarrow \angle M_{1}=\angle A_{1}+\angle B=r \cdot{ }^{\circ}$

$\Delta A M H ; \angle H=4 \cdot{ }^{\circ}, \angle M,=T \cdot{ }^{\circ} \Rightarrow A H=\frac{A M}{T} \Rightarrow A H=\frac{\frac{A M}{T}}{\frac{T}{1}}=\frac{A M}{T}$

AD slach on she ,定

باستخ :أر $: \infty$: 0 BMDN
$\left.\begin{array}{rl}\mathrm{AD}=\mathrm{BC} \xrightarrow{+\tau} & \mathrm{BN}=\mathrm{MD} \\ \mathrm{BN} \| \mathrm{MD}\end{array}\right\} \Rightarrow \mathrm{BM} \| \mathrm{DN}$
$\triangle \mathrm{ADQ} ; \mathrm{MP} \| \mathrm{DQ} \Rightarrow \frac{\mathrm{AP}}{\mathrm{PQ}}=\frac{\mathrm{AM}}{\mathrm{MQ}}=1 \Rightarrow \mathrm{AP}=\mathrm{PQ}$
$\Delta B C P ; B P \| Q N \Rightarrow \frac{C Q}{Q P}=\frac{C N}{N B}=1 \Rightarrow C Q=P Q$
$\Rightarrow \mathrm{AP}=\mathrm{PQ}=\mathrm{QC}$

لوزى نشود؟

اوليه وجود دارد؟

$\triangle \mathrm{ABC} ; \frac{\mathrm{BM}}{\mathrm{AB}}=\frac{\mathrm{BN}}{\mathrm{BC}}=\frac{1}{r} \xrightarrow{\mathrm{~L}} \mathrm{MN} \| \mathrm{AC}, \mathbf{M N}=\frac{\mathrm{AC}}{r}$ (
$\triangle \mathrm{ACD} ; \frac{\mathrm{DE}}{\mathrm{DC}}=\frac{\mathrm{DF}}{\mathrm{DA}}=\frac{1}{r} \xrightarrow{r} \mathbf{E F} \| \mathbf{A C}, \mathbf{E F}=\frac{\mathbf{A C}}{r}$
(1) $\Gamma \Rightarrow \mathrm{MN} \| \mathrm{EF}, \mathrm{MN}=\mathrm{EF}$
 اتست
 هـلعى ABCD

$$
\mathrm{MN}=\mathrm{EF}=\frac{\mathrm{AC}}{r}, \mathrm{FM}=\mathrm{EN}=\frac{\mathrm{BD}}{r} \Rightarrow \mathrm{MN}+\mathrm{NE}+\mathrm{EF}+\mathrm{FM}=r\left(\frac{\mathrm{AC}}{r}+\frac{\mathrm{BD}}{r}\right)=\mathrm{AC}+\mathrm{BD}
$$

 ($\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$)

 $\mathbf{B F}+\mathrm{DE}=\mathbf{A E}$ تسا

 \% سـده الست.
" سازگارند

هسيند
 آ آ

 .范

فصل r
درس دوم : مساحت و كاربردهاى آن

AHelef ار إر
若
$\triangle \mathrm{ABH} \boxminus \triangle \mathrm{ACH} \Rightarrow \mathrm{BH}=\mathrm{CH}=\frac{\mathrm{a}}{r}$
$\triangle \mathrm{ABH} ; \angle \mathrm{H}=4,{ }^{\circ} \Rightarrow \mathrm{AH}^{\top}+\mathrm{BH}^{\top}=\mathrm{AB}^{\boldsymbol{}}$
$\Rightarrow A H^{r}=a^{r}-\left(\frac{a}{r}\right)^{r}=\frac{r a^{r}}{r} \Rightarrow A H=\frac{\sqrt{r}}{r} a$
$S_{\triangle A B C}=\frac{1}{r} A H \times B C \Rightarrow S_{\triangle A B C}=\frac{1}{r} \times \frac{\sqrt{r}}{r} a \times a=\frac{\sqrt{r}}{r} a^{r}$

$S_{\mathrm{AnCD}}=\frac{1}{r} \mathrm{BD} \times(\mathrm{AH}+\mathrm{HC})=\frac{1}{r} \mathrm{BD} \times \mathrm{AC}$
少

$$
S_{\text {Auco }}-\frac{1}{\Gamma} B D\left(\ldots+-\frac{1}{T} B D_{\ldots}\right.
$$

.

ك

${ }^{41}>$

$$
\left.\begin{array}{l}
\mathrm{S}_{\mathrm{ASM}}=\frac{1}{r} \mathrm{AH} \times \mathrm{BM} \\
\mathrm{~S}_{\mathrm{AIOH}}=\frac{1}{r} \mathrm{AH} \times \mathrm{CM}
\end{array}\right\} \xrightarrow{\mathrm{mM}=\mathrm{MC}} \mathrm{~S}_{\mathrm{AMM}}=\mathrm{S}_{\mathrm{ACM}}
$$

دو بو ب

$\triangle \mathrm{BCN} ; \mathrm{MF} \| \mathrm{BN} \xrightarrow{\text {-h }} \frac{\mathrm{CF}}{\mathrm{FN}}=\frac{\mathrm{CM}}{\mathrm{MB}}=1$ $\Rightarrow \mathrm{CF}=\mathrm{FN}$

$$
\mathrm{AN}=\mathbf{N C}=\mathrm{rNF}
$$

$\Rightarrow A F=A N+F N=T F N+F N=T F N$
$\triangle \mathrm{AMF} ; \mathrm{MF} \| \mathrm{GN} \xrightarrow{+\mathrm{H}} \frac{\mathrm{AG}}{\mathrm{GM}}=\frac{\mathrm{AN}}{\mathrm{NF}}=r$ $\mathrm{AG}=\mathrm{TGM} \Rightarrow \mathrm{AM}=\mathrm{TGM}$
 تنيا隹

تُهيه

of
 9

 BGC

$y=\ldots$.

B
 TS $\mathrm{S}_{\text {OAD }}=\mathrm{S}_{\text {OAC }}$ ，

$\mathbf{S}_{\triangle A C D}=\mathbf{S}_{\triangle A B C D} \Rightarrow \mathbf{S}_{\triangle A C D}-\mathbf{S}_{\triangle O C D}=\mathbf{S}_{\triangle B C D}-\mathbf{S}_{\triangle O C D} \Rightarrow S_{\triangle S O D}=\mathbf{S}_{\triangle B O C}$

813

全

> 居 $\mathrm{S}_{\text {A0sa }}=\mathrm{S}_{\text {macr }} \mathrm{U}_{\mathrm{t}}$
 3,5 whel EC, AB \＃ AF, BC
 و
 ي $14 \pi^{5} 5$
进
$S_{A S M}=\frac{1}{r} A B \times M G, S_{A M C M}=\frac{1}{r} A C \times M H \quad, S_{A B C}=\frac{1}{r} A C \times B E$
$\mathrm{S}_{\mathrm{ALBM}}+\mathrm{S}_{\triangle A C M}=\mathrm{S}_{\mathrm{ANAC}} \xrightarrow{A \mathrm{~A}-\mathrm{AC}} \frac{1}{r} \mathrm{AC} \times \mathrm{MG}+\frac{1}{r} \mathrm{AC} \times \mathrm{MH}=\frac{1}{r} \mathrm{AC} \times \mathbf{B E}$
$\Rightarrow \frac{1}{r} A C \times(M G+M H)=\frac{1}{r} A C \times B E \Rightarrow M G+M H=B E$

少 1 BH

$$
\begin{aligned}
& \mathbf{S}_{\triangle A B P}=\frac{1}{r} \mathbf{A B} \times \mathbf{P M}, \mathbf{S}_{\triangle A C P}=\frac{1}{r} \mathbf{A C} \times \mathbf{P N} \quad, \mathbf{S}_{\triangle A B C}=\frac{1}{r} \mathbf{A C} \times \mathbf{B H} \\
& \left|\mathbf{S}_{\triangle \triangle A P}-\mathbf{S}_{\triangle A C P}\right|=\mathbf{S}_{\triangle \triangle A C} \xrightarrow{A \mathrm{AB}-A C-a}\left|\frac{1}{r} \mathbf{a} \times \mathbf{P M}-\frac{1}{r} \mathbf{a} \times \mathbf{P N}\right|=\frac{1}{r} \mathbf{a} \times \mathbf{B H} \\
& \Rightarrow \frac{1}{f} \mathrm{a} \times|\mathbf{P M}-\mathbf{P N}|=\frac{1}{f} \mathbf{a} \times \mathbf{B H} \Rightarrow|\mathbf{P M}-\mathbf{P N}|=\mathbf{B H}
\end{aligned}
$$

CuTr

 . . . $\mathrm{MH}+\mathrm{MN}+\mathrm{MG}=\mathrm{AP} .$.

FA
$S_{A \times N B}=\frac{1}{r} A B \times M G=\frac{1}{r} \mathbf{a} \times M G, S_{A N K}=\frac{1}{r} A C \times M N=\frac{1}{r} \mathbf{a} \times M N, S_{A B M C}=\frac{1}{r} B C \times M H=\frac{1}{r} \mathbf{a} \times M H$

 2

艮

居 ．
 Cn c^{-12}

5！جا
م執

 $i=\cdot, b=r . r, \Delta \ldots . .$.

isjorder	r	\dagger	3	4	\checkmark	\wedge
－	$\frac{1}{1}$	1	$\frac{r}{r}$	\dagger	$\frac{\Delta}{r}$	T

？ $\mathrm{S}=\frac{\mathrm{b}}{\mathrm{t}}-1 . .+$

茥 N
(1)

俍
 .
\square

Y

$x^{\top}+(r x)^{\top}=(T \sqrt{1+})^{\top} \Rightarrow x^{\top}+9 x^{\top}=T \cdot \Rightarrow 1 \cdot x^{\top}=T \cdot \Rightarrow x^{\top}=F$
$\Rightarrow \mathrm{x}=\mathrm{r} \Rightarrow \mathrm{a}=\pi, \mathrm{b}=\mathrm{f} \Rightarrow \mathrm{S}=\frac{1}{r} \times i r \times f=r \mathrm{~F}$

$$
\begin{aligned}
& \text { Sun }
\end{aligned}
$$

$\left.\begin{array}{l}\mathrm{AB}=\mathrm{AD} \\ \mathrm{CB}=\mathrm{CD} \\ \mathrm{AC}=\mathrm{AC}\end{array}\right\} \Rightarrow \triangle \mathrm{ABC} \equiv \triangle \mathrm{ACD} \Rightarrow \angle A_{1}=\angle \mathrm{A}_{r}$

$\mathrm{AC} \perp \mathrm{BD} \Rightarrow \mathrm{S}_{\mathrm{OACD}}=\frac{1}{r} \mathrm{AC} \times \mathrm{BD}=\frac{1}{r} \times A \times 9=\mathrm{TF}$
 S浣
$u_{20} 0$

$$
S_{\text {UABCD }}=S_{\text {OABY }}=A B \times h
$$

${ }_{8} B_{2} A$ 多 1

$\mathrm{AB}=\mathrm{EF}=\mathrm{b}$
$\triangle A D F: \angle A=\angle D=F 0^{\circ} \Rightarrow A F=D F=h$
$\triangle \mathrm{BCE} ; \angle \mathrm{B}_{1}=\angle \mathrm{C}=f \Delta^{\circ} \Rightarrow \mathrm{BE}=\mathrm{CE}=\mathrm{h}$
$\Rightarrow \mathrm{CD}=\mathrm{rh}+\mathrm{b}=\mathrm{a} \Rightarrow \mathrm{h}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r}}$
$S_{A B C D}=\frac{1}{r}(a+b) \mathbf{h} \Rightarrow S_{A B C D}=\frac{\mathbf{a}+\mathbf{b}}{r} \times \frac{\mathbf{a}-\mathbf{b}}{r}=\frac{\mathbf{a}^{\boldsymbol{r}}-\mathbf{b}^{r}}{r}$

هـ هـ بـا IN
$S_{\text {ascib }}=\frac{1}{r}(A B+C D) \times A D=\frac{1}{r}(b+c)(b+c)=\frac{1}{r}(b+c)^{\top}$

$\Rightarrow \frac{1}{r}(b+c)^{r}=b c+\frac{1}{r} a^{r} \xrightarrow{x T}(b+c)^{r}=r b c+a^{r}$
$\Rightarrow b^{\top}+x b c+c^{\top}=x b^{c}+a^{\top} \Rightarrow b^{\top}+c^{\top}=a^{\top}$

$S_{\text {BMN }}=\frac{1}{I T} S_{\text {ABCD }}$
$\triangle \mathrm{ABC} \cong \triangle \mathrm{ACD} \Rightarrow \mathrm{S}_{\mathrm{ANBC}}=\frac{1}{r} \mathrm{~S}_{\text {nanco }}$ (1)

$\triangle \mathrm{ABC} ; \mathbf{B M}=\mathrm{MC}, \mathrm{AO}=\mathbf{O C} \Rightarrow \mathrm{S}_{\mathrm{Avxs}}=\frac{1}{4} \mathrm{~S}_{\text {Anic }} \quad \square$
1], $\Gamma \Rightarrow S_{\text {aven }}=\frac{1}{r}\left(\frac{1}{r} S_{\text {anaci }}\right)=\frac{1}{r r} S_{\text {a AbCD }}$

$\frac{P C}{P B}=\frac{1}{r} \Rightarrow \frac{P C}{B C}=\frac{1}{r} \Rightarrow \frac{S_{A A K}}{S_{\text {ABC }}}=\frac{1}{r} \Rightarrow S_{A A B C}=H S_{A K C}$
$\triangle A B C ; M N \| B C \Rightarrow\left\{\begin{array}{l}\frac{\Delta N}{A C}=\frac{A M}{\Delta B}=\frac{1}{r} \\ \triangle A Q N-\triangle A P C\end{array}\right.$
$\Rightarrow \frac{S_{\triangle A N Q}}{S_{\text {AURC }}}=\left(\frac{1}{r}\right)^{r}=\frac{1}{9} \Rightarrow S_{\triangle A R C}=4 S_{\triangle A V O} \quad r$

$\frac{P B}{B C}=\frac{T}{F} \Rightarrow \frac{S_{\triangle U E}}{S_{\triangle A B C}}=\frac{T}{F} \Rightarrow S_{\triangle M P S}=\frac{T}{F} S_{A N B C}$
$\triangle \mathrm{ABC} ; \mathrm{MQ} \| \mathrm{BP} \Rightarrow \triangle \mathrm{AQM}-\triangle \mathrm{ABP}$

號
 0, أن

ك r با

號

 1

$$
\begin{aligned}
& b=r_{m}+r_{n} \\
& i=(m+1) \times(n+1)-\left(r_{m}+r_{n}\right)=m n-m-n+1 \\
& S=\frac{b}{r}-1+i=\frac{r_{m}+r_{n}}{r}-1+(m n-m-n+1)=m+n-1+m n-m-n+1=m n
\end{aligned}
$$

$$
\begin{aligned}
& \text { نثالط مرزكي و نساد }
\end{aligned}
$$

\mathbf{b}	\boldsymbol{r}	q	A
$\mathbf{1}$	r	1	\cdot
$S=\frac{b}{r}-1+1$	r	r	r

: صر بتات تكمباتى :
 A

完 (ا-T

共

 جواب تهابى تاقير هى كرد أحرأ

$$
\begin{aligned}
& \text { 2, }
\end{aligned}
$$

$$
\mathrm{S}_{\mathrm{Q}}+\mathrm{S}_{\mathrm{R}}=\mathrm{S}_{\mathrm{A}}
$$

 ,

 فـ

范 نسز استظاحه سود.

for

هنـلـسه دهم

$\omega \times 5,3,25$

W. ,场
 B,F,E
 B,F,D
B,F,D, C

n

Tا T

باني

號

4 4
 , $\mid-1$ 向

-

$$
1
$$

$$
, x-1
$$

$+$

$+$
www.dabirtehran.ir
VVIM.WV - EEEHRGMV
| احالتتهاى مختلن خط ر صنهد

-
دن

 Cout-A.1.5
A.

$$
\begin{aligned}
& \text {, } 0 \text { b-1, z }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ch } \rightarrow \text {, } 3 \text { l-r GH,BF } \\
& \text { J. }- \text { 加 } \\
& \text {,3,3, } \mathrm{GH}, \mathrm{BF}, \mathrm{EF} \text { ى } \\
& \text { are 1, , o } \quad \text { G } \mathrm{GH}, \mathrm{BF}
\end{aligned}
$$

$$
\begin{aligned}
& \text { g, GHD An } \\
& \text { I che } \rightarrow 2 \text { I-T GH,BF } \\
& \text { BF, s } 4, \text { BFG } 42 \rightarrow+h
\end{aligned}
$$

الكر وو مشفحبا
 T0-15

 orent.
-

nonk 20,5
:
(1) (l) , 1- +1 ,

14 1-1-1

行 t-1

 a^{1} abl $=\Delta \lambda, \Delta A B F, A B C$

Ar

$$
,+\cdots, 1 \sim B, C, E, D \quad B, C, E
$$

$$
15 s=C d
$$

$$
\begin{aligned}
& 45 \mathrm{~N} \\
& C+, \nu, P=2=d_{T}, 2, b, 1, P
\end{aligned}
$$

 （ د者

俍
 Naxم

BC, FI AB, Fl b b EF, FG خ (a HI , FG

(11) 1

$$
\rightarrow \text {, EFIH,FGJI } \Delta x \rightarrow 2 \text {, }
$$

 خ
 EIKH izin, FJ bic (EIKH ining C (2 JF, EI b b FG, FI $\underset{\text { G }}{\text { b }}$, BC, FJ $\underset{y}{b}$

$$
, 1+13,1+3 \quad d a t \rightarrow
$$

(ال包)
silo EIKH inine, FJ h ا
sitr EIKH icaio, Jl her خer
sjl HK, FI bl b

㢄

 AB, AC, BC AB, AC, AD
 ABC , DEF ABC, BCFE, ACFD (;

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

放

Sn

 ~13

> DP Tíml, ai
> If

$$
\begin{aligned}
& \text { 多 } 5 \mu=0
\end{aligned}
$$

mumbund

ا- ا-
园 130 ل

友

J -

A jو و

إي

$$
r^{r}=\Delta^{r}-r^{r}=1 \varphi \Rightarrow r=r \Rightarrow S=\pi r^{r}=19 \pi
$$

 \dot{L}_{3}^{2}, -

 هـ

希 .

和
2,5

ـ ـيكا نـب دإيردا

 8
－ 4 4．
－

据

$$
s, \Delta, \text {, w, w, b by, } \rightarrow \text {, }
$$

俍
少

ise bencol．，1

at layen

 ,

 را كلع كنتد.

(m)

(C)

(10)

(6)

$$
\begin{aligned}
& \text { 艮 } \\
& \text { 25 } 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { A }
\end{aligned}
$$

